

Aaron Higuera University of Houston

Content

- 1)Photon Detector Info from Proton Decay Event
- 2)PID: Chi2 vs PIDA
- 3) Signal Efficiency and Background Rates

Looking at PDS information

- Since the propagation of photons is much faster than the drifting of ions along the electric field light provides a references for a T0
- A PDS provides also a trigger system for non-beam events
- For a proton decay, k+—>µ+—>e+ a perfect PDS would have 3 "flashes"
 i.e. one per each decay

Looking at PDS information

- In the current reconstruction we have high-level reconstruction for the PDS
- Optical flashes (OpFlashes) are a collection of optical hits (OpHits)
- OpFlash Alg finds clusters of OpHits in time
- How many flashes does reco find in a proton decay event?

- Given the timing resolution of the PDS is very likely that OpHits from the kaon and muon OpHits would be reconstructed as a single flash
- So naively we expect two flashes K/µ flashes and a michel flash

 It seems that OpFlash Alg needs some tuning

- Given the timing resolution of the PDS is very likely that OpHits from the kaon and muon OpHits would be reconstructed as a single flash
- So naively we expect two flashes K/µ flashes and a michel flash

 It seems that OpFlash Alg needs some tuning

- Optical flashes (OpFlashes) are a collection of optical hits (OpHits)
- Look at OpHits to see if we can optimize OpFlash reco for proton decay events
- Noise= An OpHit no associated with an MCParticle (Photonbacktracker)

- Optical flashes (OpFlashes) are a collection of optical hits (OpHits)
- Look at OpHits to see if we can optimize OpFlash reco for proton decay events

- The peak time seems the same for all OpHits, naively I will expect that the width of the OpHit to be deferent for each particle (kaon, muon, michel)
- Instead of using the peak time, calculate the start time as = peak time width

- Optical flashes (OpFlashes) are a collection of optical hits (OpHits)
- Look at OpHit to see if we can optimize OpFlash reco for proton decay events
- Noise= An OpHit no associated with an MCParticle (PhotonBackTracker)

By using PhotonBackTracker find which MCParticle is associated to a OpHit

- By using PhotonBackTracker find which MCParticle is associated to a OpHit
- Multiple particles are contribute to a single OpHit

Comments I

- The current PDS cannot discriminate decays (due to timing resolution and mechanism of scintillation in LAr)
- We have to go back one step and first demonstrate that we can reconstruct to in the presence of background i.e. Ar39 flash vs proton decay flash
 To do:
 - Demonstrate that we can reconstruct interaction flash an it is inside of FV
 - Simulate Ar39 on top of kaons to see we can select the right flash from the kaon/muon/michel
- For the future... at some point we should combine TPC (hit) and PD (Ophit) to improve reconstruction
- We are using SIPMs no PMTs... sad!

PIDA vs Chi2 PID

Using linecluster	PIDA Eff (Purity)	X Eff (Purity)
Kaon	50.4% (91.2%)	42.9% (95.7%)
Muon	76.7% (98.9%)	56.0% (99.5%)

- Muons are often misID as pions
- Often there is more than one muon according to X² PID, michel track is reconstructed as a muon (MIP like), so in addition to require PID we need to look at track range

Signal Efficiency and Background Rates (Atm only)

	Signal Efficiency	Atm Background Efficiency
Kaon ID & stopping muon	38.0%	3.2%
No shower-like	30.5%	0.35%
Kaon primary vertex	23.2%	0.04%
40Kton/year		4 events

- Looking only at K—> μ events, very hard to add K—> π_s
- There are 3 key points for this analysis
 - Flash reco (vs Background)
 - Kaon ID (and muon)
 - No Shower-like
- We definitely can improve on reconstruction, thus we can improve on event selection and background rejection
- How much?

Signal Efficiency

Kaon ID & stopping muon	Signal Efficiency
Current	38.0%
Optimistic projection	85%
Conservative projection	60%

 We haven't achieved the full potential of the reconstruction, but no matter what we will have limited efficiency for low KE kaons

Kaon ID & stopping muon No shower-like	Signal Efficiency
*Current	30.5%
*Optimistic projection	80%
*Conservative projection	55%

 v_e shower ID is crucial for DUNE so I expect that the reco/ID of shower event to be very efficient

Signal Efficiency and Background Rates

Kaon ID & stopping muon No shower-like	Signal Efficiency	Atm Background Rate (40kt/year)
Current	30.5%	4 events
Optimistic projection	80%	0 events
Conservative projection	55%	1 events

- There are 3 key points for this analysis
 - Flash reco (vs Background) ← Essential, haven't looked at
 - Kaon ID (and muon)
 - No Shower-like

Commets II

CDR selling points

- 1) Demonstration of efficiency improvement by a factor ~5x better than a Cherenkov detector
- 2) Quasi-free background search

From CDR to FDTF Report

- Given the current status of the reconstruction/selection, search for proton decay using LArTPC technology does improve the selection efficiency in comparison with a Cherenkov detector
- A quisi-free background search is feasible

Why CDR & FDTF number are so different?

- CDR assumes 30 MeV/c momentum threshold ~1 MeV KE for Kaon ID (current tracking threshold is ~25 MeV)
- CDR assumes 99% Kaon ID eff
- CDR FSI model is quite different in comparison with the current GENIE FSI model
- etc...

The End

Extras

Mechanisms of Scintillation in Argon

How we simulate proton decay at DUNE?

- **❖** GENIE 2.12.2
 - Nuclear mode
 - RFG with short range nucleon-nucleon correlations
 - No binding energy
 - No de-excitation photon production for Ar, only for Oxygen (Cherenkov detectors)
 - Kaon-nucleus & GENIE FSI
 - FSI are simulated using "hA" model
 - ✓ No absorption
 - Elastic and Inelastic scattering
 - \square K+ via π is not included
 - No K+ charge exchange
 - ☐ GENIE FSI model never adds or removes K+ from the final state

How we simulate proton decay at DUNE?

- Current simulation at the generation level seems to be different from the CDR studies
- Need to set systematic uncertainties on the signal because FSI model

How we simulate proton decay at DUNE?

How far can travel a 5 MeV kaon?

Because FSI the kaon spectrum is pushed to lower KE values

Proton and neutrons appear because inelastic scattering and go from few MeVs up to a few hounders MeVs, this modifies the "elegant topology"

How far can travel a 10 MeV kaon?

A few mm (1-2 wires)

Summary

Events selection $K \rightarrow \mu$

- 1) Golden events (Kaon ID and muon)
- 2) No shower-like
- 3) Kaon primary vertex